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We investigate one-dimensional strongly correlated electron models which have
the resonating-valence-bond state as the exact ground state. The correlation
functions are evaluated exactly using the transfer matrix method for the
geometric representations of the valence-bond states. In this method, we only
treat matrices with small dimensions. This enables us to give analytical results.
It is shown that the correlation functions decay exponentially with distance. The
result suggests that there is a finite excitation gap, and that the ground state is
insulating. Since the corresponding noninteracting systems may be insulating
or metallic, we can say that the gap originates from strong correlation. The per-
sistent currents of the present models are also investigated and found to be
exactly vanishing.

KEY WORDS: Strongly correlated electron systems; solvable model; correla-
tion function; Kondo insulator; resonating-valence-bond state; transfer matrix;
persistent current.

1. INTRODUCTION

Strongly interacting electron systems have been one of the most important
subjects in condensed matter physics. Although rigorous results and exact
solutions are useful, they are rare. Recently, Brandt and Giesekus'"’ intro-
duced a model of strongly interacting electrons on d-dimensional (d>2)
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perovskite-like lattices in which the exact ground-state wave functions were
obtained for a certain range of the parameters. Mielke'®’ showed that the
exact ground state can be obtained in similar models on a general class of
line graphs. Following the work of Brandt and Giesekus, models in which
the exact ground state can be obtained were constructed by several
authors.”*>' These models are conveniently described by the cell construc-
tion of Tasaki,'” which will be reviewed in Section 2 (also see Appendix A
and ref. 5). Tasaki’® proved the uniqueness of the ground states in this
class of models. Not only the ground state, but also the singlet-pair correla-
tion function in a model on a tree was obtained.¥ Bares and Lee'® per-
formed a detailed analysis for one of the models of Strack.’® They proved
the uniqueness of the ground state and exactly evaluated the equal-time
correlation functions by a transfer matrix method.

It was pointed out [refs. 4 and 6] that the exact ground states have the
resonating-valence-bond (RVB) structure.””® It is the so-called hopping-
dominated RVB states®’ which are different from the tunneling-dominated
RVB states. The latter have been studied intensively in connection with high-
T.. superconductivity.'*'®’ Tasaki and Kohmoto'” studied the difference
of the mechanism that causes the resonance in the hopping-dominated
RVB states and the tunneling-dominated RVB states.

In this paper we shall exactly evaluate the equal-time correlation func-
tions of one-dimensional models (Models A, B, and C) which will be defined
in Section 4. One of Strack’s models which was studied by Bares and Lee
1s called Model B in this paper. We shall use the transfer matrix method
for the geometric representations of the valence-bond states,''* '"'*) which
is different from that of Bares and Lee. In one dimension, the extension of
the formalism to other models which will not be included in this paper is
cumbersome but essentially straightforward. It is crucial that we do not
have to treat large matrices as needed in the method of Bares and Lee. (In
one of the models by Strack, for example, we only treat 3 x 3 transfer
matrices, while Bares and Lee needed those of 16 x 16.) This enables us to
give a completely analytical solution with a finite amount of effort.

It is shown that all the correlation functions decay exponentially with
distance. The result suggests the existence of a finite excitation gap. It is
expected that the excitation gap originates from the structure of the ground
state which is described by a collection of local spin singlets. The filling fac-
tor of the ground state corresponds to that of a band insulating state or
metallic one in the noninteracting system. The properties of the ground
state and the gap are completely different from those in the noninteracting
system. The existence of the excitation gap is expected to be a general
feature of this cass of models. In a certain range of parameters, Model B
includes one of the models by Strack,'*® where we reproduce the results
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of Bares and Lee. In a limit of parameters, it corresponds to a kind of
Kondo lattice regime in the sense that there are one localized electron and
one conduction electron per unit cell, where the ground state is described
by a collection of a local singlet between them. The persistent currents''®-2*
are also calculated and turn out to be vanishing.

The plan of this paper is as follows: In Section 2 we review the cell
construction of the models. In Section 3 we describe the geometric
representation of the correlation functions in arbitrary dimensions. In Sec-
tion 4 we perform a detailed analysis of the one-dimensional models using
the method of Section 3. In Section 5 the absence of the persistent currents
is shown. Section 6 is a summary. The reader interested only in the physical
results may look at Sections 2 and 6 for general properties of systems in
one dimension, and then read Sections 4.1.1, 4.1.6, 4.3.1, 434, 44.1, and
4.4.4 as examples. The results for the correlation functions are shown at the
end of each subsubsection in Section 4.

2. CELL CONSTRUCTION AND THE GROUND STATE

Let us first introduce the solvable models in arbitrary dimension by
following the coustruction in refs. 4 and 5. In the present paper, we only
consider the translation-invariant lattices.* The lattice is constructed from
identical cells C, with n=1, 2...., N, where N is the number of cells. The cell
C, is a finite set of sites, where each site reC, (r=1,2,., R, where®
R=|C,]) is either a site with infinitely large on-site Coulomb repulsion (a
U= oo site or a d-site), which can have at most one electron, or a U=10
site (or a p-site), which can have at most two electrons with opposite spins.
The full lattice 4, (="_, C,) is constructed by starting from the lattice
A,=C, and adding cells C,, Cx,..., Cy successively. When we add a new
cell C,,., to the lattice 4, (=U7_, C;), we identify some of the sites in
C, ., with sites in 4, in a one-to-one manner. We note that a cell is not
a unit cell in the sense of crystallography. We denote sites in the full lattice
Ay by x (x=1,2,.., [4y]). A site x may belong to several different cells.

The correspondence between x (eA4,) and r (eC,) is given by
x=f{(n,r) (2.1)

where f{n, r} depends on the model under consideration. See Fig. | for the
correspondence.

* We can construct more generalized models whose lattices are not translation invariant. See
ref. 5 for such models.
* Throughout the present paper, |S| denotes the number of elements in a set S.
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QN= {1'2, ,R}
C;;n= {1,...'|—,..:,R}

Ce= 1,2, .- R

Cf={1,2. ~{ -[R} ! x=tnn
An= {1,2,3,4,5 - --- e % AN

Fig. 1. The correspondence between the sites x (€ Ay) and r (€ C,,).

For a cell C,, we associate a cell Hamiltonian

ne

H,= 3% a,,%a, 22)
a=T.1
with
R
a, =2 A, (2.3)

r=1

where 1{") are nonvanishing complex coefficients® and are chosen independ-
ently in each cell.” (In Section 5 we impose the twisted boundary condition
by making use of this property. In Sections 3 and 4 we only consider cases
where all the cells have the same ,. Thus we have translationally invariant
systems and we drop the index n in 1! there.) Here ¢, , and ¢  are the
annihilation and the creation operators, respectively, of an electron at site
r with spin o=1, |. They satisfy the standard anticommutation relations
{CI, as Cs, 1'} = 5r. .\'Ja, T and {C: a’ CT r} = {Cr. a» Cs, r} =0. The prOjeCtiOH

operator which eliminates a double occupancy on d-sites is

2= [ (d-n.n, ) (2.4)

reCpu==

where C,.y_,, is the set of U=o0 sites in C, and n, ,=c] ,c, , is the

number operator. This represents the infinitely large on-site Coulomb
repulsion. The full Hamiltonian is

N
H=Y H, (25)

n=1

¢ When a magnetic field is applied, A" are complex. The proof of the uniqueness of the
ground state in ref. 5 holds also in this case.

7 When a site size x belongs to more than one cell, A can be chosen independently in each
cell.
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We rewrite this Hamiltonian into the standard form. From the

identities'!- ™

o= 7/
’.aj;,(." I '@c\ 4 rrr/;1

n.)%  for

Pl =P(1—n, )2,

+
C,. a"@tcr o n(l _nr.T -

la n“r.a

for

for

r#s

rECn:U=cL

rECn:U=0

(2.6)

where C,. ,_, is the set of U=0 sites in C,,, the cell Hamiltonian (2.2) is

() 7 ()
z Z 'ls" ('1,-“ )*
g=1,] rseCy

=2

reCy =

+ Y X 24P,

o=1,] reCuuy==

,,{Z 2|A',"'|2—[ )IEDY

+
Cs. a*%: Cr' o

Tl r#s(eCy)

(A't‘")) A(")CT ﬂ‘c) (3

+ Y Y AP }9’

o=1,] reCpy=x

='@:{En— Z Z t“') '

I'YI'UA‘

a=1,1 r.xeCy,
where
(AUy* 2t for
tf.f’}.: 2 (A2 for
[Atmy2 for
E,=7% 2|A"
reC,
From (2.5), we have
H= —Eo-gv{ 5
o=T.|

where

Z 1 for

n=1

N
E():—Z E"

n=1

r#s

r=sandr,seC,.y_o

r=sandr,seC, ,_,

Z t.\" v C, ,

X, yeAy

x=f(n,r),

} 2,

= f(n, s)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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and
N
2=]] 2, (2.13)
n=1

It was shown in refs. 4 and 5 that for the electron number 2N the
unique ground state of the Hamiltonian (2.5) or (2.10) has zero energy and
is given by

N
|Pss)> =2 H H“Z.n|0> (2.14)

g=1.1 n=1

where [0) is the vacuum state. As we will see in (3.3), we have a single
valence bond in each cell. Therefore, the filling of the ground state is 1/N,,,
where N, is the number of sites in the unit cell. In Sections 4 and 5 we use
the second term in (2.10) as the Hamiltonian and denote it by Hg. The
unique ground state of the Hamiltonian Hg is given by (2.14) with the

energy E, in (2.12).

3. GEOMETRIC REPRESENTATION OF THE
CORRELATION FUNCTIONS

We describe the geometric representation of the norm of the ground
state and the correlation functions which was formulated by Tasaki'**
in arbitrary dimensions. The geometric representation of the norm is
described in refs. 4, 9, and 25 for the lattice composed of d-sites only. Here,
we have the lattice with both p- and d-sites. The ground state (2.14) can be
written

N N
Dsy=2[] Y Ardirci,ct 10>=2T] Y 2axbl,10> (3.1)

n=1r.seCy n=1 rgseC,

where

bl .=

oy

t S g
€€ tegq el for r#s
clpely for r=s

and

A =AxAY
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The operator b _ is the creation operator of the valence bond (i.e., a singlet
pair) between sites r and s if r #5. It creates a doubly occupied site if r =s.
They obey the commutation relations

[br. R bl. u] = [b: 87 b:— u] = [bI 8 bl, u] = 0 (32)
where r, s, t, and u are different sites. This operator satisfies the relation
b} ,=b!, and the ground state (3.1) is a hopping-dominated RVB state
according to the terminology of ref. 9. It is different from the tunneling-
dominated RVB states.'*'®

Now we rewrite the ground state (3.1) in a convenient form for
diagrammatic evaluations of the norm and the correlation functions. The
diagrammatic method was first introduced by Rumer'?® and Pauling.'?”’
We denote a valence bond by {x, y} and a doubly occupied site by {x, x},
which is regarded as a self-closed bond (Fig. 2). Since a self-closed bond is
actually a doubly occupied site, it is allowed only at p-sites. Let a valence-
bond configuration V be a set of N bonds constructed by choosing a single
bond from each cell. We show examples in Figs. 3a and 3b. The bonds do
not share a d-site, since it can have at most one electron. A p-site is shared
by at most two bonds. In this way, the projection # defined by (2.4) and
(2.13) is automatically taken into account. We denote by ¥~ the set of all
the possible valence-bond configurations. The ground state (3.1) is
rearranged, and written as

Pes>= > I A¥,b%,10) (33)

Vey' {xyleV

bly|@o) = — (@o|b,, = onmeemnd
(a) (b)

thloo) = © (@olby = o
(©) (d)

Fig. 2. Diagrammatic representation of the valence bonds. The solid {broken) line represents
a valence bond in the ket {bra). We distinguish four kinds of bonds and call them (a) a non-
closed ket-bond, (b) a nonclosed bra-bond, (¢) a self-closed ket-bond, and (d) a self-closed
bra-bond. A d-site with U= o0 is denoted by a solid circle, and a p-site with U =0 is denoted
by an open circle.
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Fig. 3. Examples of valence-bond configurations (a) V, (b) V”, and (c) their overlap Vu V.
The lattice is constructed from a cell with one d-site and four p-sites. The p-sites in adjacent
cells actually comprise a single p-site. The thin broken lines represent hoppings of electrons.
The graph ¥ U V' is [actorized into four connected subgraphs (d)-(g).

3.1. Norm of the Ground State
From (3.3), the norm of the ground state is

(Dos|Pssd= Y Y MVIA*(V)KOl [ b, [1 b%L,10>

Vev Vev” {x¥ieV {x.ybeV
(3.4)

where A(V)=T1,. ,1enrAs - Let us consider a graph VU V" in the expec-
tation value. We call a bond which belongs to V' a bra-bond and one
which belongs to V a ket-bond (Fig. 2). We only consider graphs V'u V' in
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which the numbers of bra-bonds and ket-bonds are equal at every site. (An
example is shown in Fig. 3c.) Otherwise, the expectation value is vanishing,
since the numbers of the creation and annihilation operators are different
at the site.

The graph VU V' can be decomposed into connected subgraphs, since
the operators b, , and b , commute [see (3.2)]. An example is shown in
Figs. 3d-3g. We denote the number of the subgraphs by »(¥Vu V'). This
decomposition is written

mrovy
vov'= 3% UuU. (3.5)

i=1

where U,c V and U;c V"

By notmg that b, and b . commute with each other for distinct x,
v, X', and y' [see (3. 2 ] we ﬁnd that the expectation value in (3.4) can be
factorlzed into parts corresponding to connected subgraphs. Thus, we have

Vo)
(Pos|Posd= 3 { [ AU asu)

V.vViey’ i=1

x<0 [l be, TII bI-.,..|0>} (3.6)

(N yYel; {x, v}e U

We note that each U;, U; in (3.6) depends on the whole of configurations
V., V',and VU V'

It sometimes happens that two bra-bonds and two ket-bonds are con-
nected to a single p-site in a connected subgraph U;u U;. For our calcula-
tions, it is convenient to eliminate such sites. This is done by using the
identity b! b! .= —b! bl _ (see Fig. 4a). Examples of eliminations of
such sites are shown diagrammatically in Figs. 4b-4d. The procedure in
Fig. 4b generates a minus sign. We assign the sign to the nonclosed bond.
We shall always apply this procedure hereafter and it should be understood
implicitly. After this procedure, the subgraph U; U U’ may be decomposed
into several graphs. We denote the number of the graphs by n(U,u U}).
The decomposition is unique and is written

n( U0 Ul
UoU- Y WuW, (3.7)

j=1

The arrow indicates that W;, W are not necessarily subsets of U;u U;. We
only have three kinds of graphs W,u W;: self-closed bonds (Fig.4e),
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(a) ) = — O O O

(b) Yo = -
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Fig. 4. (a) Diagrammatic representation of the identity 5% Bt = bt b1 .. Examples of
the elimination of a p-site with four bonds (b) and (c), Wthh exhaust all the cases. For (b),

we apply the identity {a) once. For (c), we apply it two times. (d) Example of the decomposi-
tion of a connected graph to subgraphs. We have self~closed bonds (e), a degenerate loop (f),
and a nondegenerate loop (g) after the procedure.

degenerate loops, which consist of a pair of bonds (Fig. 4f), and non-
degenerate loops, which consist of an even number of distinct bonds
(Fig. 4g). We call the graph W;u W} a loop. From the decomposition (3.7),
we have

n(Uiyw U)
OF IT beye I bL,100= I (=1)™w;, (38

{y.eU; {x. vl el J=1

where m; is the number of the procedures shown in Fig. 4b and

wf= <O| H b.\".,r' H b.t\‘,y |0> (39)

{x.v'})e W {x.vlel;
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We call it the weight. The value is classified by

1 if W,u Wi is a pair of the
self-closed bonds (Fig. 4e) (3.10)
W= . . . .
/ 2 if W;u Wjis a degenerate loop (Fig. 4f)
2(—=1)42=1 if W;u Wjis a nondegenerate loop (Fig. 4g)
where /; is the number of bonds in the jth nondegenerate loop. These

weights are derived in Appendix B. Now the norm of the ground state (3.6)
is written

myo vy atlpu )
Gosltesr= ¥ {'T [T ampaemy-1w]}

V.V'er i=1 j=1
(3.11)
3.2. Spin Correlation Function
The spin correlation function is given by
¢ S8 |@

(Pgs\Pss.>

wher‘e Si=(cl e =k o )2 s the = component of the spin operator
on site x. From (3.3), the numerator is written

<(DG.S.| Si-S}- |‘DG.S.> = z Z '1( V) 2*(V)

Vey V'er’

x<0|( B b.,au'>5i-5i M 5,105
]

o'l eV {uv)eV
(3.13)

From the commutation relations (3.2) and [S3,b,,]1=[S%b!,1=0,
where X, u, and v are different sites, we can decompose the graph Vu V’
into connected subgraphs U;u U/ as we did in Section 3.1. We only need
to consider the case where sites x and y belong to a single subgraph
denoted as U™y U'™*. Otherwise, the expectation value in (3.13) is

vanishing. The decomposition is written

Vo) —1
VoV =US9 g U™ 4 Z UvuU, (3.14)

i=1
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After the elimination of p-sites with four nonclosed bonds, we only need to
consider the case where sites x and y belong to a single loop (Fig. 5a)
denoted as W'** u W'~ Otherwise, the expectation value in (3.13) is
vanishing. We have

UGty

VoV — W(,\'.,l')u W’(-\'v,\')+ Z Wju Wj’
j=1
nvovy—1 mloU)
£x (x omuw) (315)
i=1 j=1
Aw
= WSy B L Z VVJU Wj’ (3.16)
j=1

We note that each W,, W in the second term of (3.15) depends on the
graphs U™V, U'™Y and U™ U™ and those in the third term
depend on the graphs U,, U;, and U;u U;. We denote the total number of
the loops W,;u W) in the second and the third terms of (3.15) by .4,

b
--0—-@
—_—raaad®)
_o--@
-...o—g

@ 0 © @ @
n @=o = - © 0 @9
X y X Y i
?—6

e .0"\. : o

9.8 [--¢ [ g
SRR A SR -TO B
H ! o5

(@) (h) @i

Fig. 5. (a) Example of a graph where sites x and y belong to a single subgraph in the
geometric representation of the spin correlation function. A square represents the spin
operator S°. (b, c) Type (i) configurations and (d, e) type (ii) configurations in the geometric
representation of the correlation function {¢; ,c},>. A pentagon represents the operator ¢, .

iiotjo

(f) Diagrammatic representation of the identity ¢t ,67 .= —cf ,b] .. (g, h) Examples of the

elimination of the type (ii) configuration. (i) Example of a line.
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Their labelings in (3.16) were rearranged. The weight for the loop
W(.\'.y)u Wl(,\'._\') iS

W(X, )’) = <O| ( H b:'. n"> S:\Si l_[ b_t W I0>

(2wt e wrie {z.w}e wien
=(=1)"*¥ 3 <0] 1 6. I 05,10
(' ow' e Wiy {z.w) e Wix ¥

= (= 1) by (3.17)

where d(x, y) is the number of bonds between x and y along the loop and
w is given by (3.10). A derivation is shown in Appendix C. From (3.8),
(3.9), (3.16), and (3.17), we obtain

nvuy)
(Pos|Si8;100s>= T (=™ T 0) 24U)
V.V'ey” i=1
<ol T by T L0} G18)
{¥. ¥}el; {xvlel; ’
nVou )
= Z {( -1 )d(.\'. » zli n
V.Viey’ i=1
n(Uqu;)
x[ 11 A(Wj'-)/l*(Wj)(—l)"'fwj]} (3.19)
j=1

where the weight for the loop W'™¥' ¢ W' is included in the product.

3.3. Correlation Function {¢, ,¢? >

x.o%y, o

We evaluate the correlation function defined by

_ (Pgs.| C'.\-.aCI-,g |PGs.>

<C'\-_,,Cr, a'> - (320)
. (Dss|Pgs.y
From (3.3), the numerator is written
<®G.SA| C.\'.ac,\t.a I¢G.S.> = Z Z '1( V,) '1*( V)
VeY  Ve?’
<o T b )ewscle T1 0LL10>
{u'.o'}eV fu, ol eV

(3.21)
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We decompose the graph V' u V' into connected subgraphs using the com-
mutation relations (32) and [c.,,b, J=[c.,,bL J=[c! ., bt 1=0,
where -# x and - y, and obtain {3.14). After the elimination of ’p-sites
with four nonclosed bonds, we only need to consider the case where sites
x and y belong to a single graph and they satisfy one of the following four
conditions: (i) site x (») with one nonclosed ket (bra)-bond, and (i1) site
x (y) with one nonclosed bra (ket)-bond and one self-closed ket (bra)-
bond. (See Figs. 5b—5e, where a site with a pentagon represents the
operator ¢, , or ¢! _.) Otherwise, the expectation value is vanishing Itis
convenient to eliminate type (ii) sites using the identity ¢ b% =

N7 T ALY

b! ., which is represented diagrammatically in Fig. 5f. The results

Ia‘ RV

are shown in Figs. 4g and 4h. After this procedure, the graph
WG ) n (3.14) is a line where bra-bond and ket-bond are
placed alternately and x' and y’ are always at the end of the line (Fig. 4i).
The weight is

W ’ ) V <O| < H bu'. i") C.\". ﬂ‘.i':’, I’d ],_I bl1; » I >
fur.o'd e By ’ tu, v} e W)
— ( -1 )Ii.\". W2 (322)
where /(' 3') is the number of the bonds (see Appendix D). Thus we have

(Pss | ey, a"}-, - Pas?

= Z {)&( Url.\'._|-)) i*( U("—"”)

. 17ev’

<,

mlru l"’;— 1
x [A( Ul I*(U,)

i=1

b:'. u"> C,\'. rr('._\*'_ a l_[ b: w |0>
e s

{z.wieutrn

<Ol T bue TI b::.l,|0>]} (323)

o' el e el el

— Z {l( W'(.\"‘ ) ) )»*( W(.\", _l"))( _ 1 )/l.\". VY 2+m
Fobe o

A
x [T MW} 2X(W)(—1)" w} (3.24)

j=1

where m1 is the number of the procedures shown in Fig. 5f for the subgraph
U(.\'. ¥ U Ufl.\'. _r)'
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3.4. Density Correlation Function

We first evaluate the expectation value of the number operator

_{Pis| neql|Pss?
<”.\za> -
(Pss|Pas?

(3.25)

From (3.3), the numerator is written

<¢G.S.| Hyo |¢G.S.> = Z Z )L( VI) )L*( V)

Vey 1"ev”

><<0|< I1 b,,'.,»>n_\-_a [T b.10> (3.26)
eV {

fu' et} wortel

We only need to consider the graph V'u V', which contains the site x.
Otherwise, the expectation value is vanishing. A similar calculation to that
in Section 3.2 leads to

nlo)—1
vouv=UuoU™+ Y UuU;
i=1
UM G Uy —
— W Wri,\')+ Z VVJU W;

J=1

miruvy—1 U U
3 (x wmow)

i=1 Jj=1
s
=Wy W 4 X VVJU W} (327)

i=1

where U0 U™ is a subgraph with the site x, and W*'u W' is a loop
with the site v after the elimination of p-sites with four nonclosed bonds.
We distinguish two kinds of loops: (i) a site x with self-closed bonds, and
(i) a site x with one nonclosed bra-bond and one nonclosed ket-bond (see
Figs. 6a and 6b, where a site with a circle represents the number operator).
[ We note that a subgraph U'™'u U™ with four nonclosed bonds at the
site v is decomposed into type (ii) graph and loops.] The weight is

n'(.\') = <0| ( I—[ b:’. u-'> Ny o H b: w |O>
{=ow'h e W) {z.w) e WtV
_ {1 for (i)

( _ l)l(.\')/Z—l for (ll) (328)



Yamanaka et al.

1148
(a) (b)
26D XTH
em
L@ (@) (e) 0
x{ [} XQ— X Q= X(Dmmas
e o© 3 — T I

[¢] [ [¢] ® l ..... » l I
B o W oo I S
Fig. 6. (a) Type (1) configuration and (b) type (ii) configuration in the expectation value of

the number operator. (¢) Type (i) configuration, (d) type (ii) configuration, (e) type (iii) con-
figuration, and (f) type (iv) configuration in the geometric representation of the density

correlation function.

where /(x) is the number of bonds in the graph. A derivation is given in
Appendix E. From (3.8), (3.9), (3.27), and (3.28), we obtain

(Dgs|ne,|Pss>

=y {A(U"""),{*(U"“’)

V.Vet’
<Ol T bew)nes T 51,100
{zow'h e Ut {z.wieU™
myor)—1
x [A(U:-M*(U,)
i=1
<ol 1 b T8I0 |} (329)
{u' o' e Uy {1 v} e U;
= ) {/1(VI/}(""M*(W}“")(—I)"'W(-\‘)
V.¥er’
A
x [T MW) AW, —1)™ w_,} (3.30)
J=1

The density correlation function is

{onon,p=(n,—<n )n,—<{n>)>
= <”.\"1)‘> - <’1_\'> <"_\'>
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- (Dgs | n.n, | PG . {Dgs.|n, |Pss){Pgs | n, |PGs.>

(Dgs|Pssy ({Pgs.|DPss )
D(x, y; a)
24[_—_<’1.V a><nv a)} (331)
(Pss.|Pss.y ) g
where
D(x" y; 6)=%<®G.S.| c):.a K UCI a X. a+c\ rr . —GCT —cr NO l®05> (3 32}

From (3.3), we have

D \ B G’) Z z /1 Vl A* )<0|< H bu"v’>

Vet Vet {u 0"} eV
] T t +

X E(C-\"UC)Z(TCI o, U+C\ a » —ﬂc| —o'C\ a)

x JT bl.,105 (333)
fu,vleV

We only need to consider the graph VvV’ which contains the sites x
and y. Otherwise, the expectation value is vanishing. A similar calculation
to that in Section 3.2 leads to (3.16), where W™ W' s a loop (or
two loops) which contain(s) the sites x and y. We classify the loops
Wity W as (1) sites x and y each belongs to two distinct self-closed
bonds, (ii) site x (y) belongs to the loop and site y (x) belongs to the
self-closed bonds, (iii) sites x and y each belongs to two distinct loops, and
(iv) sites x and y belong to a single graph (see Figs. 6¢c~6f). Otherwise, the
expectation value is vanishing. The weight is

w(x, y; a)

~on( T )

(. o'} e s »
X HCaCy o€ aClat Cony o _get ) TT 51,100 (334)
(. ot e win )
1 for (1)
(—1)fexz=1 for (ii) when the site
= x belongs to the loop (3.35)
( -1 )I|x)/2—l x ( -1 )I;(_\')/Z— ] for (iii)
(=1)tni2=1pn for (iv)

$22/84/5-6-18
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where /(x) and /(x, y) are the numbers of bonds. A derivation is given in
Appendix F. From (3.8), (3.9), and (3.35), we obtain

D(x, y; 0)

_ Z {A(Ur(.\'.,\'))A*(U(,\:_v))<0'< I‘[ b.—'.m)

V.Vier {=wieytsy

X 3HCxoChoCl jet o ep g0 _gct _ ey [T b, 10>

nelyvaobtyo x,oty. —aty —otx o

{zw}e UMD
nvoy)—i
x [A( Ul A%(U))
i=1
x0TI by T 51,105} (336)
{u, v’} e W; {u, v} e W;
= 2 {'1( W) AN (= 1) w(x, y; 0)
V.Vier’
A
x [T AW AX(W)(—1)™ w,} (3.37)
j=1

3.5. Singlet-Pair Correlation Function
The singlet-pair correlation function is given by

< ¢G.S. | bt, ybu, v I¢G.S‘>
< ¢G.S. l dsG.S.>

(b b, > = (3.38)

From (3.3), we obtain

<¢G.S. I b.t',ybu, v I¢G.SA>

=Y ¥ AW

Vey Vey’

X <0| < l_[ b\l) b:—,ybu‘u H bt\ |0>

{x'.yieV {x.y}eV

Il

)

V.V'ey”

x<0|< I b)b*b 1 b,t.,,.|0>} (3.39)

{x',v}eU {x.vleU

AU ¥ (U)

{n( Vol olx, vyl oulurel)

i=1
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V.Vier

a(Upw U)
x [ [T AW) A (w)(—1)™ w,” (3.40)

j=1

{n( Vol ofix ylufuel)

i=1

where V and V' satisfy the condition that the graph Vu V' u{x, y}u
{u, v} consists of connected subgraphs.

4. EXPLICIT CALCULATIONS OF THE
CORRELATION FUNCTIONS

The results of Sections 2 and 3 are valid in any dimensions. At the
moment, however, their practical use is limited to models in one dimension
in which the transfer matrix method can be applied. In this section, the
equal-time correlation functions are evaluated exactly for one-dimensional
models. We shall show the analytical procedures for obtaining them for
Model A defined below in Section 4.1, illustrating the method in detail. The
results are shown for a system size N and in the thermodynamic limit. For
Models B and C, we only show the results in the thermodynamic limit.*®’

4.1. Model A

4.1.1. Hamiltonian. Let us consider a lattice constructed from
cells with three sites. We have two lattices which satisfy the uniqueness
condition of ref. 5. One of them, which we call Model A (the other is called
Model B; see Section 4.3), is constructed from a cell with two d-sites and
one p-site (Fig. 7a). Note that a cell is not a unit cell. A unit cell is com-
posed of a d-site and a p-site. In the models constructed by the cell con-
struction, Model A is the simplest one for the following two reasons. The
structure of the lattice is the simplest. (We can construct lattices from cells
with two sites. The exact ground state, however, contains two electrons per
site and is fully filled.) The calculation of the correlation function is easier
than that of Model B.

The cell Hamiltonian (2.2) is obtained by choosing

3
A — ol d
a =3 A, ,=Ac] 4405+ A5,

no
r=1

in (2.3) and setting 4;=1 without loss of generality (see Fig. 7a for the
intracell index). Here ¢ _ (¢? ) is the annihilation operator on a d ( p)-site.
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r=1 3 2
(a)

r=1 r=3 r=2 r=1

DR % % O O O

© N+1 N 2 1

Fig. 7. Model A. (a) A cell composed of two d-sites (U = co) and one p-site (U/=0). (b) The
lattice constructed from the cell with cell labelings. (¢) The same lattice as (b) drawn
differently with unit cell labelings.

The full Hamiltonian is obtained by identifying site 1 in the (n—1)th cell
with site 2 in the nth cell (Fig. 7b). The Hamiltonian is

N
Hg=2 Y {Z [(=A, e | e —A,ct | c?  —2AcT c? +he)

n+l.atno™ n+l.obnao nobn o
e=1,] ‘a=1

+8:{c:{.1.acﬂ.a’+8pcllt7.*acr,z’,a'] +87’V+ 1 lef+ l.aC‘IIV+ l.a} g (41)
where the on-site potentials are &= —243, e/= —2(1}+43) (2<n<N),
€% .1 = —24%, and ¢”= — 1. A unit cell is labeled by n. The ground state
1s

N
055> =2 ] I «%"10> (4.2)
n=1 o=1.1
N
=2 ]] (Ayegls+Aacyly o +chh) 10D (4.3)
n=1 o=1.1

which i1s a half-filled state.

4.1.2. Band Structure in the Single-Electron Problem.
Before studying the ground state (4.3), we investigate the corresponding
noninteracting system. We consider the system with an even number of
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unit cells under the periodic boundary condition ¢, , =c{. A one-particle
state can be written

Pe>=3, 2 oncii10) (4.4)
n a=p.d

where @2 are complex coefficients. The single-electron Schrodinger equa-
tion H |® > = E |®), where E is the energy eigenvalue, corresponding to
the Hamiltonian (4.1) is

E(P:{= —llll((Pi—l +¢i+|)—2(lf+’1§) (P:{_llwr‘:—l — a9l

(4.5)
Epl=—Loy_— 05, —¢h
From the Fourier transformation ¢%= (l/\/IT/) S« e p%, where
k=0, J_r%”, i%’,..., +2n N/:jv_l,n (4.6)
the Schrédinger equation in the momentum space is
Epd= —2(1 dscosk+ 1} +43) o — (A, + Ae %) pf @1
Epl= — (A +2:¢") i — 0}
The eigenenergies are
E,=—1{2A A cos k+2A3+ 25+ 1
F (24, A, cos k+223+2A3)* —4(A2+43)]"?} (4.8)

where —, + are the band indexes with — (resp. +) corresponding to the
+ (resp. —) sign. The energy gap between two bands is 4=[(21,4,—1)
(1442222, 2,+442)1'~ When 21,4,—1=0, the gap closes at k=7.
(See Fig. 8.)

In the ground state (4.3) there are 2N electrons. Since there are 2N
sites in the lattice, the electron number corresponds to fullfilling of the
lower band. Therefore, the ground state of the noninteracting system is
insulating for 24,1, — 1 #£0. It is metallic when 24,4, —1=0.

4.1.3. Norm of the Ground State. Before calculating the
correlation functions, we evaluate the norm of the ground state (4.3), since
the state is not normalized. For the sake of convenience, we draw the lat-
tice shown in Fig. 7b and Fig. 7c. The ground state admits the geometric
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2 T T 27 T T
2 . 2 .
E E
4 = -4 r— =
6 [~ - 6 - -
(a) (b)

8l | ! gl L !

-1 0 n -1 0 n
k k

Fig. 8. The dispersion relations £, and E_. (a) The parameters are A, =4,=1. (b) The
parameters are A, =4, = l/\/i

representation (3.3), where an example of the valence-bond configuration V
is shown in Fig. 9a. The geometric representation of the norm is (3.6),
where an example of the graph Vo V' is shown in Fig.9b. We first
evaluate the contribution from a graph V'u V. It can be decomposed into
the subgraphs U,u U; [i=1, 2,.., n{ VU V')]. No loop extends over more
than two cells and there is no p-site with four bonds, since the sites which
are identified in the cell construction are d-sites. We do not need the proce-
dures shown in Fig. 4. Therefore, the graph U, u U’ cannot be decomposed
further and we find n(U;0 Uj})=1 in (3.7) and m;=0 in (3.11). The celis
with the graph are classified into four kinds (Figs. 9g-9j). Consider the
graph shown in Fig. 9g. From (3.10), the weight for the degenerate loop is
2 and the contribution from A U}) A*(U;) in (3.11) is A2. Therefore, the
contribution from the graph is 243. For other graphs see the caption of
Figs. 9g-9;.

The sum over the graph VU I in (3.6) is equivalent to that over all
the combinations of the above four kinds of cells under the restriction
that a d-site has at most two valence bonds. (The restriction means, for
example, that the identification of the right d-site in Fig. 9g with the left
d-site in Fig. 9i is forbidden.) Hereafter we shall always take into account
the restriction and it should be understood implicitly. To evaluate the sum
we use the transfer matrix method. We have to distinguish two cases due
to the restriction. Let 4, and B, be the quantity defined by the right-hand
side of (3.6) on the lattice A,. For 4,, the sum is taken over all the com-
bination of the cells shown in Figs. 9g-9) with the restriction that the nth
cell is represented by Fig. 9g or 9h. For B,, the sum is taken as for 4, with
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@ o f """""""" 6 o 6.

. '.b'.' . "-‘ )
(@) hy ) 1)}

(k) O (m

Fig. 9. Examples of conﬁguratlons of valence bonds in the geometric representation for
(a) the ground state, (b) the norm of the ground state, (c¢) the expectation value of the number
operator n?_, (d) the density correlation function for p-sites, (€) the correlation functions
(el ebty, and () the correlation function (¢ ,,,) (g)-(j) Configurations of the valence
bonds on a cell in the geometric representation of the norm. The weights including the con-
tributions from A(U) A(U') are (g) 243, (h) 1, (i) 24323, and (j) 243. Configurations of the
valence bonds on the ith cell in the geometric representation for (k-m) {nf,> and (n-p)
<nj{,,>. The weights including the contributions from A(U) A U') are (k) A2, (1) 1, (m) A3, (n)
A3, (o) 231}, and (p) 43. Configurations of the valence bonds on (q) the nth cell
{i+1<n<j—1)in the geometric representation for (¢} ,¢} 1%, and those on (r, s) the ith cell
and (t, u) the jth cell for a =p, and on (v) the ith cell and (w) the (j—1)th cell for a=d.
The contributions from A(U) A(U") are (q) A,4,, (1) A, (s) 4,43, () A5, (u) 345, (V) 444,
and (w) 4,2,.
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the restriction that the nth cell is represented by Fig. 9¢c or 9d. They are
represented diagrammatically as

A,= (4.9)
B,= (4.10)

We note that the norm in the system size N is
(Pgs|Pgs>=An+ By (4.11)

Given 4, _, and B, _,, we can form A, and B, by attaching them to the
nth cell. Let us consider A4, first. When the nth cell is represented by
Fig. 9g, we can attach 4, _, and cannot attach B, _,. When the nth cell is
represented by Fig. 9h, we can attach 4, _, or B, _, to it. Thus we have the
recursion relation

=2)‘§A11~1+A01—1+Bn—l (412)

For B, a similar calculation leads to

=214, _+223B,_+221034, _, (4.13)

They are conveniently written in matrix form as

A A, _ 14+
n =T n—1 , T = N
<Bn> 8 <Bn—l) ! <21.|‘ +
The initial vector is 1=(4,, By)"=(1,0)", since any cell in Fig. 9g-9j is

allowed as the first cell. To obtain the quantity (4.11), we choose the final
vector F=(A4,, By) =(1, 1)7. Since the transfer matrix is not symmetric,

212 1
5 4.14
20222 21%) (4.14)
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it is convenient to diagonalize it using the right and left eigenvectors. The
matrix can be diagonalized as

T,=RDR™'=L"'DL {4.15)

where

e, 0 Ry, Rn) <L” L,
D= R= = .
<0 92>’ (R?_l Rj, ’ - L, Ly (4.16)

where e, are the eigenvalues of T,, e, =(247+243+1+®,)/2, and
e, =221 +223+ 1 —w))/2, with w,= (427 +415+443 4443+ 1) They
satisfy e, >e,>0 for 4, #0 and 1,#0. We choose the left eigenvectors
L,=(L,,L,,)" and L,=(L,,, L,,)" corresponding to the eigenvalues e,

and e,, respectively, and the right eigenvectors R, =(R,,, R,)7 and
R, =(R,2, R»,)". Using the diagonal matrix C = LR, we obtain

T,=RDLC™! (4.17)

where

c:(fl ?) (4.18)

From these quantities, the norm of the ground state in the system size N
is found to be

<¢é.s.| (Dé.s) = FTTN"'TZTII
=F7RDYLC 1

_1+2A%+21§+4lf1§+w,e~
- 1

2w,

14247 +243+ 44743 — ,
20,

ey (4.19)

where we used the relation LC ~'R = |, where | is the identity matrix. In the
thermodynamic limit, the eigenvalue e; dominates and we have

14223423 +42743 + o,
2w,

<¢é.s. l cDé.s.) = (4-20)
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4.1.4. Expectation Value of the Number Operator. We
calculate the occupation on a p-site {n?_». The geometric representation
of the expectation value is {3.29), where an example of the graph Vu I is
shown in Fig. 9c. We do not need the procedures shown in Fig. 4, because
there is no site with four bonds. Therefore, we find n(U;u U;) =1 in (3.27)
and m;=0 in (3.30). In the representation, the operator n/ , modifies the
weight associated with the graph which contains the /th cell. Therefore, we
replace the transfer matrix T, by N!”’, which is a matrix associated with the
operator n? .. The expectation value can be written

(PEs|nl, [@Es>=FTy T, N”T, - T1 (4.21)

We derive the matrix N!”'. We have three kinds of graphs on the ith cell
(Figs. 9k-9m). Let 4!”’ and B{” be the quantity defined by the right-hand
side of {3.29) on the lattice A,. The restriction for the sum is that the /th
cell is represented either by Fig. 9k or (1) for 4!’ and by (m) for B!”’. They
are represented diagrammatically as

AP = (4.22)
B\" = (4.23)
and the recursion relations are
=A3A4,_\+A4,_,+B,_, (4.24)
BACh
=A7A4,_,+21B,_, (4.25)

From (3.28) the loop with operator n; , has weight 1. It is written as

AlP) A _ 1+42 1
! = N(-I,) -1 N N(/)) = 3 2 B 42
(B:-”’> ' (3) ' < 2 A;) (4.26)
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From (4.51), (4.52), (4.19), and (4.26), we have

FITVINDT -]

<nl[.,t1>= FTTNI
_FTRDY'LC-'N{”RD'~'LC'I
- FTRDYC~'LI

_ Ci—Csley/e)) — Cylesfe )N =+ Cylesfe )Y (4.27)
o {[(1+24D(14+243) + o] '

— [ +222)(14242) —w,](ea/e)N)

where

Cr=(e,—223)(e, —223)(e, — A2~ 12)

Cr=(e;—243)(e; —223) (e e, — Aley — A2e,)/es

Ci=(e, —243)(e; —223)(e e, — Aye, — A es)/e,
Ci=(e; —21?)(()2 —213)e;— 2,1% —223)

in the system size N. In the thermodynamic limit, N, i, N—i— oo, we
obtain

</2,’-’,,>=1<1+L> (4.28)
: 2 w

i

Since there are two electrons in a unit cell, from (4.28) we have the occupa-
tion on a d-site

nd > =1<1 —i> (4.29)

2 ©,

We can also obtain the same quantity from the geometric representation of
the expectation value. From the graphs shown in Figs. 9n-9p we have the
matrix associated with the operator nf :

A 0
(d) — 2
w=( s 1) o

which will be used to obtain the density correlation function.
The results are shown in Figs. 10a and 10b for a =p and d, respec-
tively. We consider the following cases: (i) A,,4,> 1 (A, =4,); (i) |4,],
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Fig. 10. Occupation on (a) the p-site and (b) the d-site for A,=0.1, 0.5, 1, 2, and 4 (solid
lines) and 4,= 4, (broken line).

|[4;,] €1 (A, =4,); and (1i) |4,] <1, 4, > 1. For (i), on-site potentials satisfy
the relation ¢, <¢,. There is almost one electron per site. For (ii), on-site
potentials satisfy the relation ¢, <¢,, £¢,—¢,> 4, 4,. The d-sites are almost
empty. The p-sites are almost doubly occupied. For (iii), the system
decouples to a collection of pairs of p- and d-sites.

4.1.5. Two-Point Correlation Functions. We calculate the
density correlation function for the p-site. We first evaluate the first term in
(3.31). The geometric representation of the expectation value is (3.36),
where an example of the graph V'L V' is shown in Fig. 9d. We do not need
the procedures shown in Fig. 4, because there is no site with four bonds.
Therefore, we find n(U;u Uj)=1 in (3.15) and m;=0 in (3.37). In the
representation, the operators modify the weight associated with the graph
which contains cells between the cells 7 and j. From the derivation of the
matrix N{”', the expectation value is

D(x, y; ¢7)=FTTN~-TJ+INJ‘.”’Tj_l T NPT T (431)
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From (4.26) and (4.31), the first term in the right-hand side of (3.31) is

D(x, y; a)
(Dgs|Pss.?
FTTNTN_l "‘Tj+1N/('p)Tj—l "'Ti+lN£'p)Ti_| LTI
B FTTVI

J j—i
fa-ofdols)-a()
€, € €,
N—j+i N—j N—i N
(@) -alg) el -ald)]
€, € €,
(i

o
{ 14222)(1 +242) + ,]
N —1
—[(1+243)(1 +242) ,]( > }) (4.32)

where

C,=(e;—2A})(e, —2A3)(A]+ 1} —e))
Co=(e,—2A2) (e, —223) (A1 + A3 —e\)(Ale; +Aie, —e,e5)/es
Cy=(e,—2A3)e, —222)(AT+ A3 —e,)(Ale, + ATe, — e, e5)/es
Ci=(e,—2A3)(e, —222)(Ale, + Aze,—e e,)

x (e e,—A3e, —A2e,)/(e e,)
Cs=(e,—2A3) (e, —243)(Ade, + Ale, —e ;)

x(e,e,—Ale, ~—A3e,)/(e ;)
Co=(e,—2A%)(e,—2A3) A1+ A3—e)(Ale, + Ale, —e e,)/e,
Co=(e;—2A3) (e, —223)(AT+ A3 —e,)(Aje, + Ale, — e e,) ey
Cs=(e3—243)(e, —2A3) (A2 + 22 —e,)

in the system size N. In the thermodynamic limit N —j, i— oo keeping
|j—1i| finite, we have

D(x, y;0) _[1(L+l>r
(Pss|Pgs> 2\w,
B <2>—'f—ﬂ AL +2(A2+ 22+ 21+ A)]
€,

2. 2
€1,

(4.33)
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From (4.28), the first term in the right-hand side cancels out with the last
term in (3.31). We obtain

N2 2[ 1 +2(A2+ 224 23424
<n,"n-‘”>‘<n,"><n’-’>=~<i'°> AL+ 2 l»+7'+ 1+ 4)]

4 4 e, e 07

(4.34)

For the d-site, a similar calculation leads to

—l=a 42222
1 d d d € 142

Ty — ‘ IN= — | — - 4.35

iy —<ntinfy = =(2) T @3

The density correlation functions take negative values and decay exponen-
tially with distance. We show the results in Figs. 11a and 11b. For the
parameter region (i) identified at the end of Section 4.1.4, the density
correlation between p-sites is enhanced and that between d-sites is sup-
pressed. For (i1) and (iii), they are suppressed.

Since we have no nondegenerate loop, the spin correlation functions
{S7S8;> are vanishing for |j—i| > 2. Since we have no self-closed bond at
the sites where the adjacent cells are identified, {b] ;bi. 1> is vanishing for
lk—il =L

We evaluate the correlation function {cf,c/%>. The geometric
representation of the expectation value is (3.23), where an example of the
graph V'u V' is shown in Fig. 9e. We do not need the procedures shown
in Fig. 4, because there is no site with four bonds. Therefore, we find
n(U;,uoU)=1 in (3.15) and m;=0 in (3.24). In the representation, the
operators modify the weight associated with the graph(s) which contains
the cells between i and j. Let the transfer matrix associated with the
operator ¢/, (c/t)be G (Gf'7"). We need a new matrix G, for the nth
cell ({+1<n<j—1). From these matrices the expectation value can be
written

(el gy =F Ty T, 00 GG+ Gy BRI T Tyl (436)
We derive the matrices. We first consider the matrix G,. It is reduced to
a number, because we have only one kind of graph (a line) on the nth cell
(i+1<n<j—1) (Fig. 9q). Let G, be the quantity defined by a sum. The
sum is taken over VU V' on the lattice 4, such that the graph consists of
loops shown in Figs. 92-9) on the kth cell (1<k<i—1) and the line

shown in Fig. 9q on the nth cell (i<n<j). A line with 2n bonds is on »
cells, since a cell has two valence bonds. The weight for the line is (—1)".
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Fig. 11. (a) Density correlation function for the nearest neighbor p-sites for 1,=05, 1, 2, 4,
and 8 (solid lines) and A, =4, {broken line). (b) That for the nearest neighbor d-sites for
7y=05, 1, 2, and 4 (solid lines) and 1, =4, (broken line).
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We assign —1 to each n cells. In this way, the weight (3.22) is automati-
cally taken into account. They are represented diagrammatically as

b

—44:G,_, (4.37)
We have
G,=—44 (4.38)

For the matrix G!”’, let G ”’ be the quantity defined by a sum. The sum
is taken over V'u V' on the lattice A; such that the graph consists of loops
shown in Figs. 9g-9j on the kth cell (1 <k <i—1) and the graph shown in
Fig. 9r or 9s on the ith cell. The recursion relation is

NONTDT

=A]Ai_|+A.]Bi4]+AIA§A‘;_] (4.39)
and iIs written
(P — R.(p) A -1 R.(p) 2
Gr=Grtr B , GFP =(A+4,43, 4)) (4.40)
i— 1

For G/-'7', let 4/” and B!” be the quantity defined by the right-hand side
of (3.23) on the lattice 4;. The sum is taken over the graph V'u V' such
that the graph consists of loops shown in Figs. 9g-9j on the kth cell
(1 £k <i—1) and the graph shown in Fig. 9q on the /th cell (i </< ). The
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restriction for the sum is that the jth cell is represented by either Fig. 9t for
A" or 9u for Bi". The recursion relations are

| S .
AP — R R
T @

=1,G,_, (4.41)
- B o)
:1%1201_, (4.42)
and are written
<Bim>=Gf“”’G,-_., G_,-L"”’=<mz> (4.43)
From (4.19), (4.36), (4.38), {4.40), and (4.43) we obtain
(el ety
FTTN—jGjL.(p)Gj—ifIGB.tp)Ti—ll
- FTTV]
= - ( _‘)n.] Az)j—i

N Ci(1)e)) 7= —Cylesfe)) ~' = Calerfe )V 77+ Cyleyfe )Y
o {1 +2A1)(1 +242) + ]
—[(1+ 221 +243) — 0, )(e,/e)™}

(4.44)

where
C,= (e, —2/1%)(€| —l%)(el —2,{%)(el _Ag)/e]
Co=(ey = e —223)(ea = 2A7)(ea — A3)/ef !
Ca= (e, = 22])er — A)ea = A)es —223)/ef =/
Ca=(ey=20)e, = A])ey = 223)e, — e ™!

in the system size N. In the thermodynamic limit N —j, i— oo keeping
|j—i| finite, we obtain

{eP Pty =~

Lo j o

—li—Jl 2 2
<_,1./12> @i+lto)@i+140) o

e, 4e,m,

822/84/5-6-19
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Next, we evaluate the correlation function (c{ c{%> We show an

example of the graph V'u V' in Fig. 9f. (We have only one kind of line.)
Using the graph of the ends of the line (Figs. 9v and 9w), we find for the
matrices in (4.36)

1
GIR'(‘I)=(—)»|/17_, 0)’ GL (dy _ <2,1 > (446)

From these matrices we obtain

1 A A |
(et ety = (22)

W, e,

The correlation functions decay exponentially with the oscillating sign.

For a finite lattice under open boundary condition, the system is not
translational invariant. In the thermodynamic limit, however by the
Fourier transformation of the correlation function {c; >, we obtain
the momentum distribution function'®’ for a=p, d

ia /a'

(ng > =fFlk,r)+f§ (4.48)
where f*'=(n? > and

2r{cosk—r]

fyry=— LSS T
ik, r) 1+r*—2rcosk

(4.49)

where

fir = _(2};?‘-(- 1 +a)l)(2/1§+ 1+ w,)/4e @,
f((/) 1/(0“ y= —il}»z/el

The results are shown in Figs. 12. There is no singularity in {n}  >. For
the parameter range (i) in Section 4.1.4, the momentum distribution for the
d-site is completely flat, while that for the p-site has a broad peak around
k=0. For (i), the momentum distribution for the p-site is almost unity for
every k and is completely flat, while that for the d-site is almost zero. For
(111), both of them are completely flat.

4.1.6. Discussion. All the correlation functions under consideration
decay exponentially with distance. These results suggest the existence of a
finite excitation gap. Therefore, it is expected that the state is not metallic but
rather insulating. The correlation lengths are given by &,, = [In(e,/e,)] ™"
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Fig. 12. Momentum distribution functions for (a) the p-site and (b) the d-site for
Ay=4>=0.1,02,05, 1, 2, and 100, and those for {c) the p-site and (d) the d-site for 2, =0.01,

0.1, 0.5, 1, 2, and 100 with A, =1.
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for the density correlation functions and &, =[In(4,4,)/e,)]~" for the
correlation functions (cjffdcfp (Fig. 13). The correlation lengths of the
correlation between p-sites and that between d-sites are the same. The spin
correlation functions vanish for |j—i| =2. The singlet-pair correlation
functions vanish for any |j—il.

We consider the limit |4,], |4,] €1 (4, =4,). We obtain ¢, £.=0.
The density correlation functions for the nearest neighbor sites vanish. The
ground state is described by a collection of the decoupled p-sites which are
doubly occupied.

We consider the limit 4,, A,> 1 (4, =4,). The correlation length con-
verges to a finite value:

5""=[1n (z;:ﬁ)]_l and fa-:[ln (ﬁ)] B

The density correlation function for the nearest neighbor p-sites remains
finite, while that for the nearest neighbor d-sites vanishes. Since there is
almost one electron per site, the correlation between d-sites is suppressed
and that between p-sites is enhanced.

For |A;| <1 and 4, > 1 the correlations are suppressed. This is because
the system decouples to a collection of pairs of p- and d-sites.

The ground state (4.3) is a half-filling state. In the noninteracting
system, the filling factor corresponds to that of a metallic state at
24,4, —1=0 and that of a band insulator for 24,4, — 1 #0. Therefore, we

1 i o ' | N |
|
(@)

08 - =
£ e :
=
o 06 / —
8§ (b)

3
Q. —
[e]
° +
0.2 —
R | N ] . | L | L
0
0 2 4 6 8 10

Ay

Fig. 13. Correlation length of (a) the correlation function (c,-“,c}‘,) and (b) the density
correlation function for 4, =4,.
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have a metal-insulator transition when A,, A, are fixed to satisfy
2J,4,—1=0, and the on-site Coulomb interaction U on d-sites is varied
from 0 to co. In the noninteracting system, the correlation length, which is
proportional to the inverse of the energy gap, takes a finite value for |4,],
|4, <1, it diverges when 22,4, —1=0, and it goes to zero for 1,, 1, > 1.
These properties are completely different from those of the ground state
(4.3).

4.2. Notation of the Transfer Matrices

In order to present the calculations in latter models efficiently, we fix
some notations. From the derivation in Section (4.1.3), the norm of the
ground state can be generally written

<¢G.S.|¢G.S.> =FTTN"'T2TII (4-50)

where the matrices depend on the model under consideration.

We describe the expectation value of a local operator ¢; by using the
transfer matrices. In the geometric representation, when there is an
operator (; the weight associated with the graph which contains the ith cell
is modified. Therefore, we replace the transfer matrix T, by O;, which is a
matrix associated with the operator ;. The expectation value is written

<¢G.S.| (9,' |¢G.S.> =FTTN"'T,~+10[T,~_| T|I (451)

When ¢, is the number operator n; ,, where a =d (p) for a p (d)-site, let
the corresponding matrix be

0,=N® (4.52)

For the two-point correlation function (@@, the weight associated
with the graph which contains the celis between i and j is modified. Let P,
be the transfer matrix between the sites i+ 1 and j— 1, and Of (O;) be the
matrix associated with the operator ¢} (¢7). We have
<¢G.S.| (9.8(9;“ |¢G.s.> =FTTNTN—1 "’Tj+1O,~LPj—1 Pi+lOfTi—l ' "Txl

(4.53)

We use the following notations:
Pr=T,, OF=N®, Of =N for D(i, j; ) in (3.32)

Py,=8;, OFf=8f™,  0f=8/™ for spin correlation
function
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Pi=Hy, OF=HFY, Of=H/" for singlet-pair
correlation function

P,=G,, OFf=G}r™, 0Of=G/"™ for correlation
function {¢, ,¢} ,> (4.54)

For the singlet-pair correlation function (b ;bi. 1>, we distinguish the
following four cases by 7:

(i) y=p sites / an d j are p-sites and i = j

(1) y=pp sites / and j are p-sites and i # j
(4.55)
(i) y=pd site { is p-site and site j is d-site

(iv) y=dd sites i and j are d-sites

We can evaluate multipoint correlation functions for operators which
are constructed from fermion operators. The numerator of the correlation
function is obtained by the insertion of the transfer matrices which are
associated with the operators.

4.3. Model B

4.3.1. Hamiltonian. Model B is constructed from a cell with two
p-sites and one d-site (Fig. 14a). This is one of the models of Strack*’
which was studied by Bares and Lee.'® The cell Hamiltonian (2.2) is
obtained by choosing

n o

3
B — d
=3 Ae, =2 +Ach +Aich,
r=1

in (2.3) and setting ;=1 without loss of generality (see Fig. 14a for the
intracell index). The full Hamiltonian is obtained by identifying site 1 in the
(n—1)th cell with site 2 in the nth cell (Fig. 14b). The Hamiltonian is

N
He=2 Y {Z [(=AAyelt et —Aelt, e —2,eft cd +he.)

na n+lovnao no-nao
o=1,1 ‘n=]

nhtu.gnag naog-na

+elclt e et of ]+85IV+,C,,<,T+L6CI}:,+LO}.‘?/-) (4.56)
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1 3 2

@ Q@0
r=1r=3 r=2 r=1

n OO0 00000

n n-1 n=1

Fig. 14. Model B. (a) A cell composed of two p-sites (U=0) and one d-site (U= ).
(b) The lattice constructed from the cell with cell labelings.

where the on-site potentials are ef= — A3, ¢/= — (1] +43) (2<n<N),
e ., = —A}, and Y= —2. A unit cell is labeled by n. The ground state is

N
285> =211 II «2%'10>
n= =11

I o

N
=2 [ T (ke +2:e0%, +cil) 10 (4.57)

n.o n.a
n=1 ao=1.1

which 1s a half-filled state. In the parameter space A,= — A,, this model
reduces to one of the models in ref. 3. The model in ref. 6 is recovered by
Setting )\.] == —}.2—_— I74I.

4.3.2. Band Structure in the Single-Electron Problem. We
investigate the single-electron problem for the Hamiltonian (4.56). We con-
sider the system with an even number of unit cells under the periodic
boundary condition. A similar calculation to that in Section 4.1.2 leads to
the dispersion relation

E,=—3{20 A cosk+ A7+ 234+ 2F [(24,,cos k+ 27+ 23)* +4]'7}
(4.58)

where —, + are the band index with — (resp. + ) corresponding to the +
(resp. —) sign, and k is the wave vector with (4.6). The energy gap between
two bands is

A=A+ ) +4]"P+ 3 (A = 2,)* +4]'2 =24, 2,

which is nonvanishing for any finite 1,, 1,. (See Fig. 15.)
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Fig. 15. The dispersion relations £, and £_. The parameters are 4, =A,= 1.

The electron number in the ground state (4.57) corresponds to fullfill-
ing of the lower band. Therefore, the ground state of the noninteracting
system is insulating.

4.3.3. Correlation Functions. From (4.50), the norm of the
ground state is

N

e
(P 1DPEs> =C_I (Ryy Ly + 2Ry Ly + Ry Lyy) (4.59)
1

where the corresponding matrices in (4.14), (4.16), and (4.18) are®

2424 22 0 [ I
T,=|A+A123 222+2322 A2, I=[ 0|, F=|2
28 w8 0 I
e, 0 0 ¢, 0 0
D=0 e 0], C={0 ¢ O (4.60)
0 0 ey 0 0 ¢

# The derivation of the transfer matrices for Models B and C is available on request.
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Here ¢; (i=1, 2, and 3) are the eigenvalues of T

n»

s 1
e =§+§(Pl’3—fpm)

[(pm—tp'/3)+i\/§(p”3+tp”3)]

€H,=

AN =

s
3

1
93=§_g [(p"—1p'P) —i\/g(p'/3+tp”3)]

where
s=22+20,+ 23+, A+ 43
t=—427 20,2, —4A2 —423 —2222, 22,72
43— AT+ 23+ A A3 =8
p=(p+3"/p,)2
Here

pr=16A3+ 12232, + 122,23 + 1643+ 242¢
+ 18234, + 64743+ 184, A3 4+ 2423 + 1243 — 122343
— 122323+ 1223+ 225 =323 2, + 144323 — 34, A3 + 248
Pa=AAY—16A7—16A2—4823 -32421, 324,42
— 4813 — 6811 —72A3 1, — 604323 —722,A3
— 6843 — 5617 —4047 A, — 324323 — 324323 — 404, 1%
— 5643 —2825 + 12432, + 122143+ 84313
+ 122745+ 122,45 — 2845 — 847 + 16451, — 82913 — 81343
+ 162, 25—811— 23 +4472,—42822—43 23
+ 102323 —4A325 - 42325+ 42,47 18)
They satisfy e, >e,>e;>0 for 4, #0 and 4,#0. The matrix L=(L,)
[R =(R;)] is constructed from the left (right) eigenvectors. We choose the
left eigenvectors L;=(L,,, Lys, Ly3)T, La=(Ly, Ly, L3)", and L;=

(Lsy, L3y, L13)T corresponding to the eigenvalues e,, e, and e;, respec-
tively, where L, =2Aj(A]—e)(1+13)—4}, L=(A1—¢)(223—43—¢)),

J
and L;;=17(2A3—13—¢;). We choose the right eigenvectors R, =(R,,,
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R, Rsu)T~ R,=(R,,, Rzz, Rsz)

T, and R3=(R|3, Rz.’h R33)T’

Yamanaka et al.

where R,;=

2232 —e)), Ry=(1}—e)(e,—243—A3), and Ry=223(A3+ A5—e).
We evaluate the expectation value of the number operator {n} >. The
transfer matrices associated with n}  are

A28 222
NP = 14222 2242222
0 24

0
23,
0

(d) _
N =

From (4.27) and (4.59)-(4.61), we obtain

o
N

19—
—_12

<

(Lll _ZI’TAILIZ)AZRH +(L12_LI3) RZI +L13R3l

for a=p

(nz > =

(2L + 32 L) Ry + (A Ly + A L) Ry + 34, Lin Ry

220
2212 (sl
0 0

(4.62)

for a=d

in the thermodynamic limit V, i, N—i— co. It can be verified that there are
two electrons per unit cell, as {n”> + {(n¢y =2. The results are shown in
Fig. 16. The case A, =|4,| was discussed in ref. 6. We consider the case

1 — 1 T T T T
s B e
——————————— | (o)
2 L
0.8 - osf ﬁ
2=1
II
0.6~/ - os} _
i
a2 :’l’ A2= }“ ] 8 J
c c i
~1\

\ Aa= My J

0.4} - ot}

A

| FF;
0.2} 1 o2 4 {
@ ] R L
0 | N i I | 0
0 2 4 6 8 10 0 2 4 6 8 10
M M

Fig. 16. Occupation on (a) the p-site and (b) the d-site for A, =1, 2, 4, and 8 (solid lines)
and 1, =/, (broken line).
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[A;] <1, 2, > 1. The occupation on a p (d)-site has a minimum (maximum)
at an intermediate value of 4,.

From {3.31), (427}, (432}, and (4.59)-{4.6]), the density correlation
functions are

€» —li=a 1
iy = sy = (2) R
. e

| 1620162

ey ==l 1
+<—’> ——— R{YLY (4.63)
€ €,€3CC; ’

where

R}-m=(L1| —L5/2) Rj;+(Lj>—Ly3) Ryy+ L3Ry,
L}')'=Rnle +(=R\/2+Ry)Ljs+(—Ry +Ry) L
R,‘-‘”=(12Lu + A L12/2y R+ (A Ly + A Ly3) Ryy+ 4 L3 Ry/2

L}tl)ziz(Rll + Ry Loy + 2 (R, /24 Ry +2Ry,) L,

in the thermodynamic limit N — j, i — oo keeping |j—i| finite. The density
correlation functions take negative values and decay exponentially with dis-
tance. We show the results in Fig. 17. For |1,| <1 and 1,> | the density
correlations are suppressed. They have a minimum at an intermediate value
of 1,.

We evaluate the spin correlation function. The transfer matrices are

S, =122
0
S SRW=(12222,0,0), Sk ={ 22 (4.64)
_)L‘!‘
_22

R, (d 192 2 132 Ad
SR = (122,22, 44%),  skW=| 0
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Fig. 17. Density correlation functions for (a) the nearest neighbor p-sites and (b) for d-sites
for 2,=05, 1, 2, 4, and 8 (solid lines) and 1, =1, (broken line).
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From (4.53), (4.54), (4.59), and (4.64) we have
(87855
FTTN—jS{_.(a)Sj—i—ISIR.(/f)Ti—lI
— J !

)”2,{3 ~li—Jl
=< € )
A )
T e (Ly2+A1L13) Ry,
16
forf=panda=p
T e L\ (R, +2Ry + Ry))
1€y
x f/‘l’rﬁ and o= (4.66)
—ﬁzel—c(l‘ll-i'/ﬁ[‘l})(Rll+2R21+R3l)
261
forf=panda=d
A3
2£’1c,( nRy)
K for f=dand a=p

We note that <S%7 S>> #{S7S>“), because the Hamiltonian is not
invariant under the reflection of the lattice. All the spin correlation functions
take negative values and decay exponentially with distance. We show the
resultsin Fig. 18. For |4, | < 1 and 4, > | the spin correlations are suppressed.

We evaluate the singlet-pair correlation function (3.38) where i and j
(k and /) are in the same cell. For (4.55), case (ii), the correlation function
1s vanishing. We evaluate them for (4.55), cases (i) and (iii). The transfer

matrices are

H,=2
0

HE 0P =)323(1,0,0),  HEP=| 222 (4.67)
224
0

H,R“"”’=2/1f/13(1, 1, 0), |_.|'(L..(:I/1)= 2,{1/1
-0

[SEN]
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Fig. 18. Spin correlation functions for (a) the nearest neighbor p-sites for i,=2, 4, and 8
(solid lines), (b) d-sites for 4, =1, 2, and 4 (solid lines), and {(c) p- and d-sites for 7, =1, 2,

4, and 8 (solid lines). The broken lines are for 4.=/,.
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From (4.53), (4.54), (4.59), and (4.67) we obtain
FTTN_kH,\IT'“') Hk—i— 1 HR.()')Ti— 1 I

bl b= TN (4.68)
2242\ —li—kl L3Ry, for y=p
1742
=<—> 42,2, (4.69)
€ L5(Ry; + Ry) for y=dp

€1¢

The singlet-pair correlation function decays exponentially with distance.
The results are shown in Fig. 19 for y=p. For |1,| <1 and 1,> | the

singlet-pair correlations are suppressed.
We evaluate the correlation function ¢ ,¢%",>. The transfer matrices are

1+43 1
&= =i )
. bE 0
Gf—<m=_z|z2<1jf5 e g) GEw=| 241222 22| (470)
R oM
A0

] (s A R AC RN VT
1 1 1 0 0

\_/

002 . é ' :Ia ‘ fsL ‘ tls ' 10

M

Fig. 19. Singlet-pair correlation function for the nearest neighbor p-sites for A,=1. 2, 4, and
8 (solid lines) and 4, =4, (broken line).
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The matrix G, is diagonalized

G,= -1, A,RDC-'L (4.71)

where
= g 0 = Rn R12> ~ <Zn le) = (51 >
D= . R=(." .17, =2 27, €= .
<0 gz> <R3| R Ly, Ly 0 2
(4.72

Here g, are the eigenvalues of G,., g,=(1+4,+4,+w,)/2 and g,=
(1424, + A, —5)/2, with @, =1 4+2(4; + 4,)+ (1, — 1,)*]"* They satisfy
g >g7>0 for 4,#0 and A, #0. We choose the left eigenvectors L, =
(L,,,L,,)7 and Lq—(Lz L,)7 correspondmg to the eigenvalues g, and
g, respectlvely. where EJ j—l‘ and L,, =1, and the right elgenvectors
R, = (R,,,R,,) and R,=(R,. R,,)", where R,;=g;,— 2% and R, =12
Here C=LR.
From these matrices and (4.44), we obtain

, t — &1 e () g2 i “{x}
{CioCla? = _)‘I’{Z'E— S+ _)‘1)‘26— S5 (4.73)

where
(p) ! 1 2 2 2
m ~ i(gln_l-l-)le-*-ATLl} [(gm_'{I)Rll'i_R?_l] (474)
1Y%m
‘{[)z——-—l ).,l(g —Z.Z)L +lg )LZL‘)
n €|g,,,C|5,,, 28Em 1 11 2 mfp 12
X[)‘-g(gm_)‘%)(Rll+R2l)+l:|z(Rll+2R2|+R31)] (475)

The correlation functions decay exponentially.
By the Fourier transformation of the correlation function (¢, ,¢ - )
we obtain the momentum distribution function for a =p and d,

<"i.a> =f‘|z)F|(k’ ") +f(za)F2(k~ ) +f:)1) (4.76)
where /' = (n? > and

2r,[cosk—r;]

Fitk,ri)= 1+r]—2r;cosk

(4.77)
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where r;= —1,4,g,/e,. The results are shown in Fig. 20. There is no
singularity in {n§ ,>. For |[1,| <1 and 1,> | the momentum distributions
for the p~- and d-sites are flat.

4.3.4. Discussion. All the correlation functions under considera-
tion decay exponentially with distance. These results suggest the existence
of a finite excitation gap. The existence of the energy gap is numerically
confirmed in ref. 28. Therefore, it is expected that the state is insulating.
The correlation lengths are given by &, =[In(e,/e,)] "' and &, =¢&,,=[In
(A143/e;)] " for the spin and singlet-pair correlation functions, respec-
tively, and ¢, =[In(A}13g,/e,)] " (Fig. 21). (They satisfy the relation
o> & >E,.=C&,.) The correlation lengths of the correlation between
p-sites and that between d-sites are the same. We note that the spin correla-
tion is ferromagnetic.

We consider the region A,, 1,> 1. The d-sites are almost empty and
the p-sites are almost doubly occupied. The correlation lengths behave like
Eo~Ayand &, &, &y~ A /2 (for A, = 4,). The correlation functions for
the nearest neighbor sites are suppressed.

For |4,], |4,] <1, there is almost one electron per site. The density
correlation functions for the nearest neighbor p-sites are enhanced, while
those for d-sites are suppressed. The spin correlation functions for the
nearest neighbor p-sites are suppressed, and those for d-sites are enhanced.
Therefore, the electrons on the d-sites have a tendency to behave like a
localized spin. This corresponds to a kind of Kondo lattice regime'®’ in the
sense that there are one localized electron and one conduction electron per
unit cell. The ground state is described by a collection of local singlets
between them. The effective exchange coupling between the p- and d-sites
J~ 2,2, /(e? — &) is comparable to the hopping amplitude between p-sites.

For |A,| <1 and 4, > 1 the correlations are suppressed. This is because
the system decouples to a collection of pairs of p- and d-sites.

The ground state (4.57) is a half-filling state. The filling factor
corresponds to that of a band insulator in the noninteracting system where
the excitation gap satisfies the relation 1 <4 < 2. Therefore, the correlation
length is finite and is almost independent of the parameters A, and 4,,
which is a different situation from that of the ground state (4.57). The
properties of the ground state (4.57) are completely different from those of
the noninteracting system.

4.4. Model C

4.4.1. Hamiltonian. The lattice of Model C is constructed from a
cell with four d-sites and one p-site (Fig. 22a). The model has four free

§22/84/5.6-20
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Fig. 20. Momentum distribution functions for (a) the p-site and (b) the d-site for
Ay=4,=001, 1, 10, and 100, and those for (c) the p-site and (d) the d-site for 1, =0.01, 0.1,
1, 5, and 10 with 4,=1.
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12

correlation length

A 6 8 10
Fig. 21. Correlation length of (a) the correlation function (c,;.,c}“,), (b) the density correla-
tion function, and (c) the spin and the singlet-pair correlation functions for 1, =4,.

parameters. We investigate the simplest model with one parameter. The cell
Hamiltonian is obtained by choosing

5
() _ — d d d 1
&y o= Z )'rcl'.a='11Cl.a+}'2C(2.a+/13C3.a+}'4cz.a+’15cg_a

r=1

and setting 4,=1 (r=1, 2, 3, 4) and A;=41 (see Fig. 22a for the intracell
index). The full Hamiltonian is obtained by identifying sites 1 and 2 in the

(n — 1)th cell with sites 3 and 4 in the nth cell, respectively (Fig. 22b). The
Hamiltonian is

N
Hs=2 Y {Z [(=Acer —Ac9er Qe P — Q92

ma-no noono n+l,0%n 0™ n+l.gv n o
o=1.1 ‘\n=1
_ pdlt o d2 L dlt dl d2t d2 dit d2 _ ,d2t dl
cn.ﬂcn.a Cn+l,acn,a_Cn+l.a'cn.a—Cn+l,acn.o cn+l.a'cn.d+h'c')

2
+ 8[)‘.[)1' P 4+ gllc(/lTC(II + Etlcd._f C(IZ ]

no - nag n"nag no n"no na
d dlt dl d d2t d2
+8;V+lCN+l.a'CN+l,a+8N+]cN+l.acN+l.n}W (4.78)
where the on-site potentials are &’ = —A> ¢?= —4 (2<n<N), and
ef=¢%,,=—2. A unit cell is labeled by n. Here c¢%' (c?2) is the
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1 3 r=1 r=3 r=1

2 4 =2 r=4 r=2

—— Hf‘_l ——
(a) (b)

Fig. 22. Model C. {a) A cell composed of one p-site {U=0) and four d-sites (U=c0).
(b) The lattice constructed from the cell with cell labelings.

annihilation operator on a d-site for r =3 (4) in the nth cell. The ground
state is

N
125s>=211 II «5105

i=1 o=1.]

A’
=P 1_[ H (CIIIT+C(IZT+cle +CZ‘_~’:1,0+AC;I:,T(/) |O> (479)

na no n+l.o
n=1 a=1,1

which is a 1/3-filling state.

4.4.2. Band Structure in the Single-Electron Problem. We
investigate the single-electron problem for the Hamiltonian (4.78). We con-
sider the system with an even number of cells under periodic boundary
conditions. A similar calculation to that in Section 4.1.2 leads to the disper-
sion relations

E = —3{6+A*+4cosk+[(6+A*+4cosk)>—842]'2}
E,=-2 (4.80)

Ey=—3{6+A*+4cosk—[(6+A>+4cosk)>—842]%)

where 1, 2, and 3 are the band indexes and k is the wave vector with (4.6).
The energy gap between the lowest two bands is 4 =0 for 0 <A< \/é and
4=22for A>./2. (See Fig. 23.)

The electron number in the ground state (4.79) corresponds to full-
filling of the lowest band. Therefore, the ground state of the noninteracting
system is metallic for 0 <1 < \/i and is insulating for 1> \/5.
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Fig. 23. The dispersion relations E,, E,, and E;. The parameters are (a) A=1, (b) A=ﬁ,
and (c) A=2.

4.4.3. Correlation Functions. From (4.50), the norm of the
ground state is

N
e
(PEs | PEsD =C_I(R||L|1 +4R> Ly + Ry Lyy) (4.81)
) 1

where the corresponding matrices in (4.60) are

24402+ 4% 422+42% 2 1 1
T,=| 2+ 2+422 22|, 1=[0], F=|4
2 8 2 0 1
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e, 0 0 cg 0 0
D= 0 €s 0 5 C= 0 CH 0 (482)
0 e 0 0 c;

s i t
e3=—3-—§[(1+z\/§)(—]+(1_2ﬁ)q]

where 5 =6+ 817 + A%, 1= A%(48 + 5847 + 164* + %), and g =(p, +3*?p,i)'?
with

Py =4681% +5124° 4+ 1831° + 2420 + 212
P>=25(4096 + 673647 + 42884% + 13281° + 1924% + 91'7)

They satisfy e, >¢,>e;>0 for 1#0. The matrix L=(L;) [R=(R;)] is
constructed from the left (right) eigenvectors. We choose them as we did in
Section 4.3, where L; =(e;—2)>—4e;2%, L, ,=42°(¢;A>+¢;—2), L;3=
Me;+2), R;=(e;—2)*—4e,A%, Ry;=(2+1%)e;—4, and Ry;=2(e; +6).

We evaluate the expectation value of the number operator (n? _». The
transfer matrices associated with n} , are

2242 222+44* )¢ 1+22 222424 428
N7 = 122 207 LYEER N = ! 1+42 122
0 0 0 0 2 1
(4.83)
From (4.27) and (4.81)-(4.83), we obtain
/{2
4—(4L11R2]+L12R31)
¢
for a=p
{ni,»= (4.84)

|
dc. [(2Lyy—Ly3+2Ly3) Ry, +(2L,,—4L3) Ry +2L 3Ry, ]

1
for a=d
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It can be verified that there are two electrons per unit cell, as
{n?y +2{n¢> =2. The results are shown in Fig. 24a. For |1| <, on-site
potentials satisfy the relations ¢,<e¢, and |e, —¢,| > || (the hybridization).
There is almost one electron per d-site. The p-sites are almost empty. For
A> 1, on-site potentials satisfy the relations ¢, <¢, and ¢,—¢,> 4. The
p-sites are almoust doubly occupied. The d-sites are almost empty.

e
8.0
c
~
0
002
o
£
o
o
~ 004
a
c
G-
£
-0.06
-0.08 L . . ;
0 5 10
A

Fig. 24. (a) Occupation on the p-site (solid line) and the d-site (broken line). (b) Density
correlation function for the nearest neighbor p-sites (solid line) and d-sites (broken line).
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From (3.31), (4.32), and (4.82)-(4.83), the density correlation func-

tions are

{ningy —<nyy{ngd

—li—j g4 —li—jl 34
) 2 gy (@ Sy
€, 4cic, © ° e, dcicy 7T

for a=p

ﬁ)ﬁu_jl 1 R((I)L[’d)_’_<
e deycy, 2 T2

for a=d
where

Rj'-‘n)=4L“le+Ll'_7R3j

L{"=4L, Ry + LRy,

(4.85)

—li—=j
e, 1

A R({/)L(;“
e, 4cyc7

Ri®=(2L\;—Ly;+2L ;) R;;+ 2L, —2L,3) Ry+2L 3Ry,

L,(-d' = Lj(2Ry )+ Ljx( =Ry +2R5) +2L;5(R, —2R,, + Ry)

The density correlation functions take negative values and decay exponen-
tially with distance. We show the results in Fig. 24b. For |1] <1 and 1> 1
the density correlations are suppressed.

We evaluate the spin correlation function. The transfer matrices are

§i1"=(312,32%,0),

& =(422,0,0),

=2

2,2
stm=| 0 (4.86)
0
14
s;‘. (dy _ _12

-2
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From (4.65), (4.81), and (4.86) we have
o 2\ k-4
(S:85) =<——)
€

4

(L1 Ry +5L 5 Ryy) for f=pandoa=p

_Ze,c,
/12
X _Ze,c,L”R” for f=panda=d (4.87)
/12
_2e,c,L'3R” for f=dand a=d

The spin correlation functions decay exponentially with oscillating sign. We
show the results in Figs. 25a-25c. For || €1 and A3 |, the spin correla-
tions are suppressed.

We evaluate the singlet-pair correlation function. For (4.55), case (iv),
the correlation functions are vanishing for |k —i| > 2. We evaluate them for
(4.55), cases (i) and (iii). The transfer matrices are

—4)?
H,=2,  HRO=3%1,50), H-"=| 0 (4.88)
0

for y=p and dp. From (4.68), (4.81), and (4.88) we obtain

t 2 —|i—kl 2/{4
Cbisbery =~ o e—c_(Lan"'SleRzl) for o f=p, dp
1 161

(4.89)

The singlet-pair correlation functions decay exponentially with distance.
We show the results in Fig. 25d. For |4] <1 and 4> 1 the correlations are
suppressed.

We evaluate the correlation function {¢; ,c},>. The transfer matrices
are
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¢ 001
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Fig. 25. Spin correlation function for (a) nearest neighbor p-sites, (b) p- and d-sites, and
(c) d-sites. (d) Singlet-pair correlation function for the nearest neighbor p-sites.

20
GIR,({))=_1<? ‘21 (1)>’ Gj{_.(p)_____l 1 1
0 0
1412 22 0 A2t 2
G"M=_<t ! 0>’ Gy =l §+2 27| (490)

2 2
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The matrix G, is diagonalized as
G,= —2RDLC! (491)

where the matrices are shown in (4.71). The corresponding quantities are
g, =2+ 22+ Aw,)/2 and g,=(2 — A%+ dw,)/2 with (0;—(4+/1 )‘/’ They
satisfy g, > g, >0 for 1#0. We choose the matrlces L=(L, i) and R= (RU)
as we did in Section 4.3, where L 1 =(g—D/A%, 7—1 R,j —1, and
R,j— 1. [ See also (4.72).] From these matrices and (4.44) we obtam

=li=jl —li—Jl
Cuocl oy =(=28) " e (228) e s

€ 1

where

1
= 2 - L L,
n zclcmelg,” [ (gm ) ll+gm l,]

X[2(g,— 1R+ Ry)+ A% (R;, +4R, + R3))] (4.93)

2 2
i:.“ FE < [(gn—1)L,>+4L3][(g,,— D R, + "R, ] (4.94)
TC Gy

The correlation functions decay exponentially with oscillating sign.
By the Fourier transformation of the correlation function {¢; ,c] T,
we obtain the momentum distribution functions for « =p and d,

{ng > =fPF ik, r)+ [ Fak, ra)+ [ (4.95)

where F;(k,r,) is defined by (4.77), r;,= —g,/e,, and f5’'={n} >. The
results are shown in Figs. 26a and 26b. There is no singularity in the
momentum distribution functions. The momentum distribution for p-sites
has a sharp peak at k == for |4| < 1. It is almost flat for 4> 1. The momen-
tum distribution for d-sites is expected to be flat for the complete limit
|A] < 1.

4.4.4. Discussion. All the correlation functions under considera-
tion decay exponentially with distance. These results suggest the existence of
a finite excitation gap. Therefore, it is expected that the state is insulating.
Their correlation lengths are &,,=[In(e,/e;)] ", &, =&, =[In(2/e,)] 7,
and ¢, =[In(2g,/e,)] " (Fig. 26¢c). (They satisfy the relation & > ¢&,, >
¢ =¢&,p.) We note that the spin correlation is antiferromagnetic.



1192 Yamanaka et al.

10

correlation length

Fig. 26. Momentum distribution function for (a) the p-site and (b) the d-site for A =0.1, 0.5,
1, 2, and 10. (c) Correlation length of (d) the correlation function {c; c}_,), (e) the density

io

correlation function, and (f} the spin and the singlet-pair correlation functions.
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We consider the region |4| < 1. There is almost one electron per d-site.
The p-sites are almost empty. The correlation lengths are large. However,
the correlation functions for the nearest neighbor sites vanish.

For 23> 1 there are almost two electrons per p-site. The d-sites are
almost empty. The correlation lengths and the correlation functions for the
nearest neighbor sites vanish.

The ground state (4.79) is a 1/3-filling state. The filling factor
corresponds to that of the band insulator in the noninteracting system for
/1>\/§. In the noninteracting system we have the metal-insulator trans-
ition at A =\/§ by the variation of .. However, the ground state (4.79) is
insulating for any A. The properties of these states are completely different.

5. ABSENCE OF THE PERSISTENT CURRENT

In Section 4 we assumed the parameter 4, to be real. Relaxing the con-
dition, the effects of a magnetic field are included by taking hopping matrix
elements to be complex. Thus the effects of the magnetic field are
investigated exactly for the systems of strongly correlated electrons
described in this paper. Let us calculate the persistent current. Considering
the system in a ring geometry and putting a flux through the ring, we can
measure the Aharonov-Bohm effect and the persistent current.!'**¥ In the
ring geometry, we include the effect of the flux @ by changing the hopping
matrix elements of the Nth cell. We first classify sites in the Nth cell into
two classes as (1) sites which belong to the Nth unit cell and (ii) sites which
are identified with sites in the cell C,. We denote the sets of the sites (i) and
(i1) by Cy., and Cy.,, respectively. The cell Hamiltonian (2.2) associated
with the Nth cell is obtained by choosing

1Cn1
an (D)= Y IM(D)ec,, (5.1)

r=1

where

IMN(p) =

r

(N) ,id
{A, e for reCy., (52)

(M)
Al for reCy.,

with real A*"’. From (5.1) and (2.3) for 1 <n< N —1, the Hamiltonian is

HS(¢)=—9’{ D) t_\.‘y(<15)c.‘:.‘ac_‘._a}9 (53)

o=T.1 x,vedn
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where
N-—1
L (@)=Y 1+ N(D) for x=f(nr), y=flns) (54)
n=1
with
Amplmg for r#s
1= 2(AM)? for r=sandreC, y_. (5.5)
(A2 for r=sandreC, ,_..

(1<mg<N-1,1<ng<N-—1)and

(AM(@)* AM  for r#sandreCy,,,seCy.,

MMTNY( ) for r#sandreCy.,,seCy.,
(M(P) =< AN for r#sandr,seCy,, (5.6)

2(AM)? for r=sandreCy.y_..

(A2 for r=sandreCy. y_,

The ground state of Hy(®) is

N—1
|Ps(P)) =2 H [< H a,*,.a> “}v,a(ds)] 10> (5.7)

a=1.1 n=1

The ground-state energy is given explicitly by

I

N—1
- Y X 2IAMP- Y 21 M)

n=1 reC, reCnx

N
-y Y 2mp (5.8)

n=1 reCy

Ey(D)

It is independent of the flux @. The persistent current [ is evaluated by
using the Byers-Yang relation."'”’ We obtain

OE(®P) _
I« ——a(p——O (5.9)

The persistent current is vanishing for any of the solvable models discussed
here. This is consistent with our conclusion that the ground state is
insulating.

Extending the discussion here, the absence of the persistent current
can be shown in any dimensions for the models discussed in this paper.
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6. SUMMARY

We investigated three models with strongly correlated electrons which
have the RVB state as an exact ground state. The number of electrons per
unit cell is restricted to be 2. The correlation functions are evaluated
exactly using the transfer matrix method for the geometric representations
of the valence-bond states.**’ The two-point correlation functions for spin,
density, and singlet-Cooper pairs are obtained for any distance. All the
correlation functions decay exponentially with distance. The momentum
distribution functions are also evaluated and there is no singularity. The
results suggest that the ground states of the models are insulating. The per-
sistent currents are also considered and turn out to be vanishing,

APPENDIX A

We describe the models used by several authors''™ and those
investigated in this paper using the cell construction of Tasaki (see Table
I). The lattice is constructed by the cell in the second column in Table 1.
The cell for the line graph is constructed as follows. We define a lattice
&£ =(A, B), where A is the set of the sites (vertices) and B is the set of the
bonds (edges). The line graph L(.¥) = (A%, B*) constructed from a lattice
A has the bonds of & as sites (A* = B), and two sites are connected by a
bond in B’ if the corresponding bonds in B have a site in common. The
cell is defined by sites (e4*) which are connected by a bond (eB) to the
same site (€ A).

APPENDIX B
We first note the equalities
ci..b} ;=sgn(a) cf (c; .l ,) (B.1)
and
bibla= 2 (ciselMey o0k _o)+ 4, (B.2)
=11
where 4,= —%,_; ¢l (¢} _.c; )¢ _,, which has the property 4,[0) =
0] 4,=0,

We show an equality. Consider a connected graph Wy W' with 2n
(n=1) bonds. We set

w={{2,3},{4,5},.,{2n,2n+1}}
w'={{1,2}, {3, 4},... {2n—~1,2n}}
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We define the quantity

L1 0. )= <01 ( T1 basev ) enochir, 1T 04y 10> (B3)

k=1 k=1
For n=1, from (B.1) we have
L(1; 0, p) =<0| b2.3C|.GC;./)bt.2 10>
= _<0| bZ,SC;_”(Cl‘abT,Z) |0>

—sgn(o) <0 bz.scg,,,cz. 210>
=sgn(g) sgn(—p) 0| ¢, ¢l _,c5,¢% 10D
=—4 (BA4)

G.p

From (B.1) we have

L(n; U»P)=<0|<H b2k.2k+1>Cl,ndnu.”b}r.z H b;k—l.zk 10>
K

k=1

=2

—sgn(o) <0 < H bzk.2k+|> ";n+l.,,C§. —a H bT_’k—l.2k 10>
k=2

k=1

n

—sgn(a) <0 < H blk.2k+l> b2.3C§n+l.pC;. —a bIk—l.Zk 10>
k=2

k=2 )

il

—sgn(o) sgn(—o) <0| < H blk.2k+l)
k=2

n
X ( _C3.0) CT.’n-&- 1, p H bgk-l.zk |0>
k=2

il

—<0|<H blk.2k+l>c3.o’C§n+l.p H b;k—l‘:’k 0> (B.5)
k=2 k=2

We change the labeling of the lattice sites by the rule j — j—2 and obtain
n—1 n—1
Lin; e, p)= —<0| < H b2k,2k+|> cl,dC;n—].p H bgk—l.zk 0>
) k=1

k=1

=—Ln—-10p)

=(—1)"""L(1; 0 p)

=(=1)"¢ (B.6)

a. p

822/84/5-6-21
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We show (3.10). For the self-closed bonds and degenerate graph we
have w,;=1 and w;=2, respectively. Consider the nondegenerate loop
W,u W} with [;=2n (n> 1) bonds. We set

W,=1{{2,3},{4,5},.. {2n—2,2n— 1}, {2n, 2n + 1 (=1)}}
Wi={{1,2},{3,4},..{2n—1,2n}}

From (B.2) and (B.6) the weight is

W; =<0| l—[ b, 2k 1 l_[ b"k—-l 2% 10>

k=
n—1 n—1
- <H b’k 7k+l>b"h ’n+lb7n—1 2 H b’k 1.2 10>

n—1
<O| 1—.[ b2k‘2k+l>< Z Cap, ,,C-," €1, —a('In—l —a+A7n>
k=1 o=1.1]

; —

n—1
3 | R2 )
k=1

n-—~1 n—1
Z <0 <H blk.2k+l>clll.dcg,n,rtcl.—ﬂcgn—L —a H bgk—l.zk [0>

a=1.1 k=1 =1
n—1 n—1
= Z <0|<1—[ b, 7k+l>cl —JCI(:x D+l —a H b’k 1. 2% 10>
o=1.1 k=1
Y Ln—1;, -0, —0)
a=1,1]
— Z (_l)n_la——a.—a
o=1.1
=2(_1)n-—1
=2(—1)i2! (B.7)

where we used the relation /=2n in the last line.

APPENDIX C

We first note the equalities

Slb;’.j_%bj:jqi-al.j (Cl)
Sibl,=1b7,—3, '
iYi T 2% g i



Strongly Correlated Electron Models 1199
where

Bt _ .t At t At

bl,=ciqcj +eiciy (C2)

is the creation operator of the triplet pair between sites / and j and satisfies
the relation b} ;= —b],. Here

t ot t oAt
€ T G

5i.j= 2
(C.3)
cheln, +cl el n,
5 _ LThi Ll i1t
= 3

which have the properties d, (0> = (0| §,=0 and J, |0> = (0| J,=0.
We show (3.17). Consider the connected graph W'y W'Y with
2n (n=1) bonds. We set

Wi = {42 3} {4, 5}, {2n,2n+1}}
Wi = (401,23 43,4}, {2n—1, 2n}}

We denote the right-hand side of (3.17) by S(m),

s<m)=<0|(n bzk.m.)SiS;, [T 5% nl0>  (C4)
k=1

k=1

where we set x=1 and y=m. From (C.1), we have

n
=z H T
X Do 2m 1854157 [T 0% 210>
k=1

S<2m+1)=<0|<n Do) SiS5mer T1 b1 10D
k=1 k=1

< H bzk.2k+l>

k=m+1

m—1
=<0| < l_[ b?.k.zk+l

k=1

m—1 n
=<Ol<n bzk.2k+l>< H b2k.2k+1>

k=1 k=m+1

n

l- . -
X <_ b2m+ 1. 2m +olm+ l.2m> S] H b;k— 1.2k |0>

k=1
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=<O|<I:[ b2k.2k+l>< H bzk,zk+1>
k=1

k=m-+1

1~ ) n
(=3 Bamamsr ) ST TT By 10)
k=1
m—1 n
:_<0|<H bZk,2k+l>< H bzkA2k+l>
|

k= k=n1+1

n
= = T
XDy~ 1. 2m S 2m S H b3 1.2 10>

k=1

=<0 (H bzk.2k+l>S Som H bzk—l.y‘- 10>
k=1

k=1

= _<Ol <H b2/\',2k+l>'s S"nyb’m 1. 2m

k=1

nm—1 n
(T 6] T 8%yn10>

k=1 k=m+1i

= _<0‘ (H b?.k J\+I>S < bim 7m—l+52m‘2m—1>

k

m—1 n
<(TL0hova) T1 Beoral0)
k=1

k=m+1

l..
=—<OI<Hb2k 2/\+1>S < zb"m ]"m)
n—1 n
X( II b;k——l.zk) [T 641 2%10>
k

k=1 ¢ =74 ]

=(_1)2<OI(H b’k 7&+l) 7m ]bzm~l.2m

m—1 n
(T 8% ae) T 85y l03

k=1 k=m+1
=(—1)2 <0|(H bzk‘2k+l> 7n1—l l_[ b..k 1, 2k |0>
k=1

=(=)*S(2m—1)
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= (=1 5(1)

=(—1)1'"<01(H bu‘m.)s-;S: [T 5%y 510D
k=1 k=1

(__I)Zm n n
= 4 <0| H blk.2k+l H b;k—l‘zk |0> (C5)
k=1 k=1

Similarly, we have

Sm)= (=11 300 TT ba sk v1 [T B3 s 2 10 (C.6)
k=1 k=1
Therefore, we obtain

S(m)=4(=1)"» w, (C.7)

where we used the relation d(x, y)=m —1 and the definition of w;.

APPENDIX D

We show (3.22). Consider the line W™y W'¥*) with 2n (n>1)
bonds. We set

W =1{12,3},{4,5},.., {2n,2n+ 1 (=y")}}
W = (] (=x'),2}, {3,4},... {2n—1,2n}}

From (B.3) the weight is

<0 (H b2k‘2k+l)cl.ac;n+l.p H by 1. 2% 10> = L(n; 0, 0)
k_

k=1 =1
=(-1y"
— ( -1 )I(,\".,v')/l (Dl)

where we used the relation /(x', y')=2n.

APPENDIX E
We show (3.28). Consider the graph W' u W'™; we set
W = {{1(=x),2}, {3.4},.., {2n—1,2n}}
W ={{23},{4,5},..{2n,1}}
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We have

<0|<I—[ bzk—1‘2k>"1‘y n b;k.zk+l [0>

k=1 k=1

n—1

=<0| <H bzk—l.2k>bl.2(l —Cl.aCI.g)bz.x,l H bzk.2k+l [0>
k=2 k=1

—<0| ]_[ b’k . 2k H b?k 2k + 1 |0>

k=1

_<OI<H b?A—17k>Cl aclunbu v/\+1|0> (E.)

k k=1
From (B.3), the second term is

<0 (H b"k—l 7A> (4 ocl p H b')/\ %41 10>

k=1

n~1
=<0|(H bou_1.2 )bl 20y, rrC| a ‘7nl H b"k et 0D

k=1

n—1
(n bo 1, > —by, 162, 6) CInd 1.1 Hb’>k ,k+1|0>
k=2 k=
=<0|<H b1, )C H ”k w1 0D
k=2 =
-1 n—1
=<0|< Dok 2 >C1 ric"n—ldl—l b7A~17k|0>
k=1 =1

=L{n—1;0,0)

= ( -1 )n -1

=(_1)l(.\')/2—l (Ez)
The fourth line is obtained by renaming the site j as j— 1. We used the rela-

tion /(x)=2(n—1). From (B.7) and (E.2) we have

0| H bzk—l.Zk"La H b;k,2k+l |0>=2(—1)I('\')/2_1“(—1)”"-)/2“'

k=1 k=1

— ( —1 )l(,\')/Z— 1 (E3)
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APPENDIX F

We show (3.35). For (i), the sets W™¥ and W™ are empty. The
right-hand side of (3.34) is

wi(x, ¥;0) =3{<0] ¢ o€y 5t €t 10D + 0] ey g€y _pch el 10} =
(F.l)
where we used the equality <0 c, ,c, ,c! ¢l 10> =<0]¢c, ,c, _,c!

Yy, —0

For 11) we suppose that the site x belongs to the graph. From (3.28)
the right-hand side of (3.34) is

w, (%, i o =é{<0|c”‘,|0><0|( I b)

{u' v’} e W)

X Cv\'. GCI', T 1_[ bt | >

u, v
{u.v} e Wwix)

+COle, el 030l (T )

{u',v'} € W)

X bu’. v Ca, acT\-, o H u I |0>}

{u, v} e wix)
— ( _ 1)/(,\')/2—!

(F.2)
where we used the equality <0] ¢

,.._,,CI.,., |0> =<0 c,, _,c;_ . 10> =1L
For (ii1} the right-hand side of (3.34) is

W, (Y y,o)= % {<0| ( 1_[ bu’. v’) C_v.acfy l_[ bT

e u, v |0>
{u', v’} € Wi )

X<O| ( l_l bu', o'

{e' '} € W)

{u. v} € W)

4 s C.T', l__[ b:; v | >
{u, v} € W5

+ <0| < l_[ bu’. v’) Cy, —ac'\Tr_ —a l—.[ bT

10>
{w'.v'} e Wi Y “r

X <0| < ]___[ bu',u’
{

u, v’} e W)

{u v} e wix

ool TL 8,105}
{u, v} € Wi
=(_1)I(x)/2—l (_l)l(,v)/z—l

(F.3)
where we used (3.28).
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For (iv) consider the graph W™y W'Y, We set
W =1 (=x),2},{3,4},... {2n—1,2n} }
wier = {{2 3} {4,5},., {2n,1}}
We denote one of the terms in the right-hand side of (3.34) by G(n, j; o, 1),
G(n, j; a, T)=<O|<H b2k—l.2k>cl ot ,Tr l—[ b"k w1 10D (F4)
k=1 k=1
From (B.1) we have

G(n, j,0,1)

n—1

+
bak 1% | b1.261, 4« jrcl 2021 H bu w1 10D
k=

n—1
<0|< bay_y, ) by s ¢ rc}r( an,abr,l) H bgk.2k+l 10>
k=1

<0I

l~)

=2

n—1

T _[ rc"n [ l—[ b"k 2k +1 |0>

!l

H 21 2%

n—1 n—1
=<0|<H b2k.2k+l>Cl.rrcj—-l.rc}—l.rcgn—l.o’ ﬂ b;k—l,Zk 0> (F.5)

k=1 k=1

The last line is obtained by renaming the lattice sites by the rule k — k — 1.
For j=2m we have

Gn—1,2m;0,1)

n—1 n—1
=<OI<H b"k ’k+l>cl ac"m—l rc"m—l rc’(n H+lo l_I b 2%k — 1,2k |0>

k=1

n—1
= <0, < n bzk.2k+l> Copm— l,rC;m—l,rC;(n—lH-l,a(—cl‘ab}.,l)

k=1

x IT b3y 2 10D

n—1

= —Sgn(U) <Ol ( H bZ/s 2k + l> Copm— ch;n— l,tc.;{n—l)+ l,aCZ. —a

k=1

n—1

x JT 6%y 2 103
k=2
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n—1

—sgn(o) 0| < H by, 2k+1> (bs,3¢2 ) sz—LrCerm— l.rC;(n—l)-i- .o

k=2

n—1

x [T 631 2 10>
k2

i

n—1
t t
— (0] < 1—[ bZk,2k+l> C3.0C2m—1.1Com-1.:C2n—114+ 1.0

k=2

n—1|

x H bgk—l.Zk 0> (F.6)
k=2

We change the labeling of the lattice sites by the rule j — j—2 and obtain

Gn—1,2m;a, 1)

n—2
T T
- <O| < 1_[ blk.2k+l> CLO’C'Z(IN—l)—-l.‘rc‘l(nr—l)—l.rc'_’(n—Z)+l.rr

k=1

n—2

x ﬂ AP 1)

k=1

—Gn—1,2(m—1);0,71)

=(-1Y"Gn—m—1,2;0,71)

n—m-—1

=(_1)m <Ol < H blk‘2k+l) Cl.acl.t(‘{rcz(n—m—l)+1.6
k=1

n—nm—1

x T1 b3 120>

k=1

n—m—1

=(_1)m <O| ( H blk 2k+l> Cl.a'cl,rcz(n—m—l)+l.cr( —CT,rbI.?-)
k=1

n—m—1

X bgk-l.y\- 10>
k=2
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n—m-—1\

=("1)m<0’< H bZk.2k+l>Cl.acl.rb‘lr.IC;(u~m-—l)+l.aC;‘r

k=1

n—m—1

x 1 bh%-1xl10>
k=2

n—m—1

( l)m sgn(r g, -t <Ol ( ]_—l b%,.’.k-#—l) Cglu—m—l)-i—],ac;‘r

k=1

n—m—1

x JT 6L %10
k=2

n—n—1
=( ‘—l)m 55, -7 <0l ( I_I b2k.2k+l> C; ——rC;(u——m—l)+l.d
k=2
n—m-—1
x TT bh_1 210> (F.7)
k=2

We change the labeling of the lattice sites by the rule k -k —2 and obtain

Gn—1,2m; a,1)

n—m-—2

‘_’("“1)'” 60. -1 <Ol ( H bZk\2k+l> 611‘, —rcg(n—n1—2)+l.a

k=1

x [T b0
k=1

=(—-1)"é, _ Lin—m—2;0, —1)

=(_1)m G,_‘.X('—l)" n— 75

o, —T

=(=1y""'d, _. (F.8)
where we used (B.6). For j=2m —1 a similar calculation leads to
G2m—1l;0,7)=(-1)"""'4, . (F.9)
Combining (F.8) and (F.9), we find for (F.5)

<0\(H b » )c Jeech ol H BY w10 =(=1)""16, _ypuns
k= -! (F.IO)
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We obtain the weight

1

=3 LG(n, y;0,0)+ G(n, y; 0, —0)]

wi(x, y; o)

: 6 — 1yt py +6 dix, p1+ 1
=(-=1 fix, )2 —1 Yo (= 1)x g o, (—1Y) -
(=1 >
( —1 )/(.\'. 2l
=73 F.11
2 (F.11)

where we used the relation n=I(x, y)/2.
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